4 O ct 2 00 1 Internal energy of high density Hydrogen : Analytical approximations compared with path integral Monte Carlo calculations

نویسنده

  • M. Bonitz
چکیده

The internal energy of high-density hydrogen plasmas in the temperature range T = 10, 000 . . . 50, 000K is calculated by two different analytical approximation schemes (method of effective ion-ion interaction potential EIIP and Padé approach within the chemical picture PACH) and compared with path integral Monte Carlo results. Reasonable agreement between the results obtained from the three independent calculations is found, the reasons for still existing differences is investigated. Interesting high density phenomena such as the formation of clusters and the onset of crystallization are discussed. Typeset using REVTEX 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics of hot dense H - plasmas : Path integral Monte Carlo simulations and analytical approximations

This work is devoted to the thermodynamics of high-temperature dense hydrogen plasmas in the pressure region between 10 −1 and 10 2 Mbar. In particular we present for this region results of extensive calculations based on a recently developed path integral Monte Carlo scheme (direct PIMC). This method allows for a correct treatment of the thermodynamic properties of hot dense Coulomb systems. C...

متن کامل

Path Integral Monte Carlo Simulations and Analytical Approximations for High-Temperature Plasmas

The results of analytical approximations and extensive calculations based on a path integral Monte Carlo (PIMC) scheme are presented. A new (direct) PIMC method allows for a correct determination of thermodynamic properties such as energy and equation of state of dense degenerate Coulomb systems. In this paper, we present results for dense partially ionized hydrogen at intermediate and high tem...

متن کامل

Accurate vibrational-rotational partition functions and standard-state free energy values for H2O2 from Monte Carlo path-integral calculations.

Accurate quantum mechanical partition functions and absolute free energies of H(2)O(2) are determined using a realistic potential energy surface [J. Koput, S. Carter, and N. C. Handy, J. Phys. Chem. A 102, 6325 (1998)] for temperatures ranging from 300 to 2,400 K by using Monte Carlo path integral calculations with new, efficient polyatomic importance sampling methods. The path centroids are sa...

متن کامل

All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas.

We develop an all-electron path integral Monte Carlo method with free-particle nodes for warm dense matter and apply it to water and carbon plasmas. We thereby extend path integral Monte Carlo studies beyond hydrogen and helium to elements with core electrons. Path integral Monte Carlo results for pressures, internal energies, and pair-correlation functions compare well with density functional ...

متن کامل

Path Integral Simulations of the Thermodynamic Properties of Quantum Dense Plasma

A novel path integral representation of the many-particle density operator is presented which makes direct Fermionic path integral Monte Carlo simulations feasible over a wide range of parameters. The method is applied to compute the energy of a dense hydrogen plasma in the region of intermediate coupling and degeneracy and is compared to analytical and experimental results. Many interesting ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008